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Abstract 
 

PODOS is a performance oriented 
distributed operating system being developed to 
harness the performance capabilities of a cluster 
computing environment. In order to address the 
growing demand for performance, we are 
designing a Distributed Operating System (DOS) 
that can utilize the computing potential of a 
number of systems. Earlier clustering 
approaches have traditionally stressed more on 
resource sharing or reliability and have given 
lesser priority to performance.  

PODOS adds just four new components 
to the existing Linux operating system to make it 
distributed. These components are a 
Communication Manager (CM), a Network 
Manager (NM), a Resource Manager (RM), and 
Global Interprocess Communication (GIPC). 
This paper addresses the communication 
mechanism in PODOS.  

In any distributed environment, 
communication appears to be the performance 
bottleneck. Thus, in PODOS, we have 
implemented a high-speed communication 
subsystem that short circuits the network 
protocol stack, and further performs packet 
multiplexing (Transmission-Groups) across 
multiple network interfaces thereby achieving a 
two-fold performance gain. 

In this paper we discuss the high-
performance communication subsystem in 
PODOS and further analyze the performance 
gain achieved by comparing the variants of the 
PODOS protocol with traditional networking 
protocol. 

 
 

1.0 Introduction 
 

A distributed operating system (DOS) is 
basically the cooperation among a group of 
machines interconnected by a network such that 
the group of machines appear to the user as a 
single operating system. With distributed 
operating systems, users are not aware where 
their files are stored; nor are they aware that their 
programs may be executed by remote machines. 
All resources within the network are managed in 
a global fashion using global mechanisms rather 
than local mechanisms [1]. 

A group of machines could cooperate 
for a variety of reasons. A few of them are (1) 
Resource Sharing, (2) Performance 
Enhancement, (3) Reliability, (4) Fault Tolerance 
and (5) Transparency [1]. Tens of distributed 
operating systems have been designed and 
implemented with various goals. Most 
distributed system designs are willing to 
compromise on performance. On the other hand, 
systems that are designed to be performance 
oriented make no attempt to provide a single 
system image. They provide a high-performance 
computing environment (e.g., Beowulf [2], 
Condor [3], etc). High-performance computing 
environments are designed to solve one class of 
problems, whereas a PODOS is designed as a 
general high-performance computing solution. 

With these issues in mind, we are 
designing a distributed operating system that is 
performance oriented (PODOS) [4]. As a 
secondary design goal, PODOS provides a 
resource sharing environment. 

PODOS is the interaction of two or 
more monolithic Linux [5] machines. The 
PODOS design has a number of key 
performance benefits. A few of these are: 
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1. PODOS builds upon a highly robust and 
performance oriented monolithic Linux 
kernel. 

2. PODOS adds very few components to 
the basic Linux operating system, 
thereby maintaining a simple design. 

3. Each of these components is designed 
to achieve high performance. For 
example, the CM uses a custom high-
speed protocol and the NM is tightly 
glued to Linux's filesystem to speed up 
remote file fetches. 
In the following sections we give an 

overview of the PODOS design, the network 
topology that help building an efficient system. 
We then explain the communication subsystem 
in PODOS in detail and finally present a 
performance analysis with a study of the 
preliminary results. 

We then explain the communication 
subsystem in PODOS in detail and finally 
present a performance analysis with a study of 
the preliminary results. 

 

2.0 The PODOS Cluster 
  

PODOS is an experimental Linux 
cluster being developed at the University of 
Mississippi. The primary project objective is to 
explore the performance capabilities of a 
clustering system, but at the same time 
incorporate the basic features of any distributed 
operating system. Furthermore, we try to 
minimize the additions to the basic operating 
system [6]. Each node in the PODOS cluster is a 
monolithic Linux kernel. (We have chosen a 
monolithic kernel against a microkernel because 
the monolithic paradigm suits our goal of high 
performance much better.) Our design involves 
adding four components to the basic operating 
system to support distributed features. These 
include  

• Communication Manager 
• Resource Manager 
• Global IPC 
• Network Manager 

Let us look at these components briefly. 
 

2.1 Communication Manager 

  
The Communication Manager (CM) 

handles remote communication in the PODOS. 

Responsibility of the CM is to interact with peer 
CMs in the cluster. The CM transmits and 
receives frames to/from other hosts through a 
Local Area Network (LAN). The CMs 
implement a minimal send and receive protocol 
to the Network Manager (NM), Resource 
Manager (RM) and Global Inter Process 
Communication (GIPC). The CM accepts remote 
host addresses and messages from higher-level 
processes (e.g., local-to-remote GIPC, NM-to-
NM and RM-to-RM communication). The CM 
will combine these addresses, messages, and RM 
status information with an error-free protocol to 
send the message to its remote counterpart on the 
target machine [6]. 

 

2.2 Resource Manager 

  
The Resource Manager maintains 

global system state information. Each RM in the 
cluster maintains information about every other 
node. Although resource management implies 
decision making algorithms (processor allocation 
algorithms, etc.), the RM is designed to be as 
simple as possible for performance. Thus, the 
RM provides the primitives required to build 
unique resource management strategies. 
Typically, a program loader will query the RM 
concerning a remote machine. The purpose of 
this query is to discover the number of processes, 
willingness to accept remote queries, etc. and 
based upon these queries, assign processes to 
processors. The RM will make use of the CM to 
transmit and receive system information in a 
broadcast or a piggybacked fashion among its 
peers [6]. 

 

2.3 Global Interprocess 
Communication 

  
The GIPC provides a mechanism with 

which processes can communicate in PODOS. It 
allocates a global pid (GPID) for every process 
in PODOS so that processes can be uniquely 
identified. The GPID of each process is the PID 
(given to the process in the local machine) and 
the IP address of the machine (to record the fact 
that the process originated from this particular 
machine). GIPC further provides communication 
primitives for processes to communicate among 
themselves [6]. 
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2.4 Network Manager 

  
The Network Manager will interface 

with two Linux basic operating system (OS) 
components: the file manager and the process 
manager. These basic OS concepts will be 
extended to support the notion of a PODOS. File 
and process management will be able to 
recognize non-local file names and invoke the 
NM. NM local-to-remote requests will be carried 
out by simply invoking the CM [6]. 

Let us look at the network architecture 
in PODOS. 
 
3.0 The PODOS Network 

Topology 
 
PODOS has a special network topology 

that aids in implementing an efficient and a high-
performance communication mechanism [7]. Let 
us look at a model of the PODOS network 
topology. Figure 1 gives an overview of the 
PODOS network architecture. 

PODOS uses an Ethernet network 
interface as the communication media. Each 
node represents a machine where node 1, node 2, 
... is machine 1, machine 2, etc. PODOS can use 
as many interfaces as the system supports. Our 
current implementation has three Ethernet 
interfaces, namely eth0, eth1, and eth2. 
Each node is connected to the public subnet, 
W.X.Y.0,  through the primary interface, eth0 
and thus gets an IP address, W.X.Y.n, where n is 
between 1 and 254. Further to this, each node 
has two more interfaces, eth1, and eth2 
which are connected to private subnets 
192.168.1.0 and 192.168.2.0 respectively and 
thus get two more IP addresses, 192.168.1.n and 
192.168.2.n. Thus each machine in PODOS is a 
multihomed host. Private subnets in PODOS are 
configured in such a way that machines can 
communicate only through the interface pairs 
eth0-eth0, eth1-eth1, and eth2-eth2. 
More specifically, packets on eth1 can only go 
to eth1 on another machine. This can be easily 
observed from Figure 1, since the network 
192.168.1.0 connects only eth1's in all 
machines. Similarly, the network 192.168.2.0 
connects eth2's. The Transmission-Groups 
feature uses these interfaces in a round-robin 
fashion [7]. 

4.0 Communication in PODOS 
  

Communication in PODOS is handled 
by the CM. Higher-level DOS layers (RM, NM, 
GIPC, etc.) rely on the CM for packet 
transmission and reception. The CM in each 
node uses a specialized protocol to talk to its 
neighbors. The CM comprises of the following 
components: 

1. PODOS-packet protocol 
2. Communication Descriptor 

Table (CDT) 
3. Transmission-Groups 

Figure 2 demonstrates the relationship 
among these subsystems. To the left in Figure 2 
is the traditional network protocol stack, the 
Open Systems Interconnection (OSI) [8] model 
of networking. To the right, in Figure 2, are the  
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PODOS components. The communication 
subsystem is depicted in more detail. The CM 
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Transmission-Group algorithm is applied to each 
entry in the CDT. And finally the PODOS-
packet protocol transmits the packet using the 
datalink layer of the OSI model. The RM, NM 
and GIPC use the CM to communicate with peer 
entities in the PODOS cluster. We will now look 
at the various components of the CM (Figure 2). 
 

4.1 PODOS-packet Protocol 

  
The PODOS-packet protocol is at the 

very bottom of the CM. It provides primitives for 
transmitting and receiving PODOS-packets. The 
PODOS packet protocol has evolved from a very 
rudimentary structure [9]. In this section we will 
describe the protocol briefly. 
 Since our primary goal is performance 
and the typical DOS bottleneck is network 
bandwidth, we needed an efficient 
communication mechanism that could speed up 
packet transmission and reception. We needed 
something other than the traditional networking 
protocol (left side of Figure 2). The traditional 
protocol consists of several layers and each layer 
has its own headers and error checking. 
However, traditional protocols also contain a lot 
of detail to accommodate many types of network 
configurations [8]. Thus, we designed and 
implemented a distributed operating system 
packet (PODOS-packet), which bypasses the 
traditional network protocol stack [4]. 
In Figure 2, we can see how the CM resides 
above the datalink layer (Ethernet driver). From 
Figure 2 it is also evident how the CM has 
moved away from the traditional network layers 
and has less overhead. Our approach here is to 
have the CM interact with the datalink layer 
(Ethernet driver) to transmit and receive packets. 
In short, the CM will have to transmit and 
receive packets that bypassed the network 
protocol stack. This would mean that the CM 
packets would have to have a separate protocol 
ID [9], one that is different from IP, ICMP etc. 
 Now let us look at the CDT. 
 

4.2 The Communication Descriptor 
Table 

  
The CDT is the CM's interface to the 

other PODOS layers. The CM shields the higher-
level PODOS layers by performing all the 
intricate details involved with packet 

transmission. The higher-level PODOS protocols 
register their packets with the CDT. The CM 
picks up packets from the CDT and transmits the  
packets. The CM also uses the CDT to construct 
a virtual circuit, which helps in streamlining 
communication between peer components [10]. 
The CM also maintains a simple timeout 
mechanism by which it can keep track of errors 
and retransmissions. Thus, the CM maintains a 
simple and elegant protocol for packet delivery 
[6]. 
 

   Figure 2 

4.2.1 The CDT Structure 

 
 A fully functional communication 
descriptor table has marked a milestone in the 
evolution of the CM. The higher-level PODOS 
layers fill in a CDT entry and invoke the CM. 
The CM picks up the PODOS-packet from the 
CDT and transmits it. A typical entry in a CDT 
is described in Table 1 [10]. 
 

4.2.2 Classes of CDT entries 

  
Communication descriptor table entries can 

be classified into two categories based on the 
time spent in the table. They are: 

• Ephemeral 
These entries are short duration entries and 

release the CDT slot once the packet has been 
transmitted. An example of such a request that is 
short-lived is the RM query. The RM 
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periodically broadcasts system information to all 
the nodes in the cluster. It does not wait for the 
arrival of any packet. Whenever a broadcast 
message arrives the CM invokes the RM. Thus 
the RM would register its packet in the CDT and 
invoke the CM. Once the CM transmits the 
packet, it releases the CDT entry corresponding 
to the RM query [10]. 

• Virtual Circuits (VC) 
When a higher-level PODOS protocol 

wishes to communicate with its peer for a longer 
duration, it usually requests the CM to establish 
a virtual circuit. The virtual circuit is nothing but 
a {cdt-active-index, cdt-passive-index} pair. 
When a higher-level PODOS layer (at the active 
end) requests such an entry, the CM makes a 
CDT entry and transmits the packet. The peer 
CM (at the passive end) receives the packet, 
makes a CDT entry and then invokes the 
appropriate layer. Henceforth, any 
communication between these two layers would 
go through this virtual circuit. This helps in 
streamlining the subsequent flow of packets [10]. 

Now let us look at the PODOS-packet 
structure. 

 

4.3 The PODOS-packet Structure 

  
Table 2 describes the PODOS-packet 

structure and also illustrates the importance of 
each field [10]. 

Now let us look at how PODOS handles 
Transmission-Groups. 
 

5 Transmission-Groups 
  

Transmission-Groups is a suite of 
algorithms that multiplex packets across multiple 
network interfaces. Transmission-Groups exploit 
parallel networks connected among distributed 
computers and thereby match the external 
aggregate network bandwidth with internal 
memory bandwidth. The CM employs 
Transmission-Groups to achieve further 
performance gains over the PODOS-packet 
protocol. The PODOS cluster is configured in 
such a fashion that the suite of Transmission-
Group algorithms can exploit the network 
architecture. Each node in PODOS has been 
configured with multiple Ethernet interfaces  
(Figure 1). This increases the LAN bandwidth 

and effectively utilizes the communication 
media. Once the higher-level PODOS layers 
register their packets with the CDT, the CM 
decides which interface the packet should go 
through. This decision-making is Transmission-
Groups [7]. 
Struct comm_desc_tab {   

struct 
PODOS_pkt pkt; 

The PODOS-packet structure is 
embedded in the CDT  

char *to_pid[8]; Higher-level layers specify the 
process id in the remote machine to 
whom the packet is sent. This could 
be a group of processes to support 
group communication. 

int to_pid_cnt; The count of the processes 
referencing this CDT entry. 

int need_reply;
  

Whether the CDT entry should be 
held for a longer time. For example, 
RM requests are typically short lived 
as compared to NM or GIPC 
requests. 

Char 
*hostname[20]; 

The name of the machine to whom 
the packet is being sent. Could be list 
of machine names (for group 
communication). 

int host_cnt; The count of machine names. 

Struct interface 
if; 

The interface structure (will be 
discussed later). 

};    

 
Table 1 

 
struct PODOS_pkt 
{ 

  

    char 
from_pid[8]; 

The global pid of the process from whom the 
packet is originating. 

    char to_pid[8]; The global pid of the process to whom the 
packet is being sent. 

    char ctrl_info; This is a one byte field that is used by the CM 
to differentiate NM, RM and IPC packets. It 
uses the least significant 3 bits. Higher-level 
protocols use the most significant 5 bits. For 
example, the NM would use it to differentiate 
open, read, write, close, etc.  

    int   
cdt_active_ind; 

The CDT index at the active end (the end that 
originated the connection). 

    int 
cdt_passive_ind; 

The CDT index at the passive end (the end that 
is accepting the connection). 

    int 
wake_active_passi
ve; 

Since the CM code is the same for active and 
passive ends, it needs to know which process to 
wake up. 

    int length; The length of the data being sent. 

    char data[1400]; The data. 

};   

 
  Table 2 
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Transmission-Group algorithms are 

applied only to PODOS-packets in the cluster. 
PODOS-packets can travel on any one of the 
three interface pairs (The following denote active 
end interface-passive end interface: eth0-
eth0, eth1-eth1, and eth2-eth2). 
Whereas regular network traffic (IP, ICMP, 
IGMP packets) continue to go through eth0 
only. If we wish to multiplex those packets too, 
then we would have to employ an algorithm 
similar to Transmission-Group suite at a higher 
level in the network protocol stack. 

Now let us look at Transmission-
Groups in more detail. 

 

5.1 Transmission-Group Suite 

 
The Transmission-Groups is a suite of 

algorithms, each based on a different goal. We 
provided a set of routines (round-robin, load 
based) so that one may select the best algorithm 
that suits their requirements. The Transmission-
Group routine is held as a function pointer in the 
interface structure (described in Table 3) in the 
CDT entry. When a higher-level layer wishes to 
transmit a packet it makes an entry in the CDT 
and invokes the CM. The CM initiates the 
Transmission-Group algorithm by invoking the 
function pointer. The function pointer is set 
during system initialization. 

The following section describes a 
simple round-robin Transmission-Group 
algorithm that multiplexes virtual-circuits across 
multiple interfaces. 

 

5.1.1 Round-Robin with VC multiplexing 

 
PODOS employs a simple round-robin 

mechanism to multiplex packets across multiple 
network interfaces. But since, multiplexing 
packets would result in ordering and sequencing 
issues, PODOS multiplexes virtual circuits. This 
implies that all packets resulting from a virtual 
circuit would be transmitted on a particular 
interface pair. Inshort, PODOS employs a "1-
Interface-for-all-Packets-in-a-VC" rule. This 
ensures that packets reach their destination in 
order and saves us the trouble of ordering them. 
Ephemeral packets (packets resulting from an 
Ephemeral CDT entry, a RM packet) would be 
transmitted on the current interface (maintained 

by the Transmission-Group routine). Let us look 
at this algorithm in more detail. 

Implementation 
The round-robin algorithm maintains an 

interface counter which it increments for every 
virtual circuit. This counter is reset once it 
reaches IF_MAX. The algorithm differentiates 
virtual circuits from ephemeral entries by 
looking at the control byte of the packet. Let us 
discuss the implementation of VC multiplexing 
with reference to a NM remote file-write. The 
local NM wishes to write a file to another node 
by contacting its peer entity in the other node. 
This NM file-write request is characterized by an 
open call, a sequence of write calls and then a 
close call. This is a typical virtual circuit. Once 
the NM decides to write a file to another node, it 
builds a PODOS-packet, makes a CDT entry and 
invokes the CM. Embedded in the CDT entry is 
the interface structure. Below is Table 3 
describing the interface structure. 
 
struct interface if {   

    char 
active_interface[6]; 

The hardware address of 
the interface at the active 
end. 

    char 
passive_interface[6]; 

The hardware address of 
the interface at the 
passive end. 

    Int 
(*elect_interface)(struct 
device *); 

Transmission-Group 
algorithm held as a 
function pointer. This is 
the function that round-
robin's packets. 

};   

 
Table 3 

 
Having the interface structure in the 

CDT entry is the key to the algorithm. Each 
entry will have such a structure and packets can 
be transmitted to/from the address specified in 
the interface structure. Once an entry is made in 
the CDT, the Transmission-Group routine 
corresponding to that CDT entry is launched by 
calling cdt[i]->elect_interface(), where i denotes 
the particular entry. The Transmission-Group 
algorithm maintains a simple round-robin 
strategy with which it multiplexes virtual 
circuits. 

Now, when the higher-level layer (NM) 
registers subsequent packets in the CDT, the CM 
just inspects the interface structure of the CDT 
entry and transmits the packet to the 
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passive_interface address on the active interface 
address. Thus, with this approach, the 
Transmission-Group routine is invoked only 
once per virtual circuit (or CDT entry) and all 
packets belonging to one virtual circuit are 
transmitted on the same interface pair. Thus, the 
algorithm makes a basic assumption that 
"virtual circuits have the potential to generate 
a lot of traffic on the interface". Hence, the 
algorithm attempts to uniformly distribute virtual 
circuits across the three interfaces. Ephemeral 
entries do not contribute much to the interface 
load and thus the algorithm does not worry about 
such packets [7]. 
 

6.0 Performance 
  

In this section we analyze the 
performance capabilities of PODOS protocol and 
its variants. We further compare them with the 
traditional TCP/IP protocol and present the 
preliminary results based on this analysis.  

    Figure 3 
 

In order to study the behavior of these 
two protocols, we conducted a series of 
experiments, each with a different objective, and 
measured the average round trip time (Average 
RTT) in each case. All our experiments involved 
comparing variants of the PODOS protocol with 
the traditional networking protocol under various 
network loads [11]. 
 

Each experiment: 
• Computes the average RTT of 

packets using 10 sets of 100 
packets each.  

• It discards the maximum and the 
minimum set and then computes 
the average. 

• Transmits each packet with a 1 sec 
delay. 

Let us look at each experiment in detail. 

Experiment #1  
In this experiment we compare the 

RTT's of a simple PODOS protocol with a 
typical socket read/write call of the TCP/IP. The 
experiment transmits 10 sets of 100 packets 
each. Each packet is 64 bytes long and is 
transmitted with a 1 sec delay. Table 4 depicts 
the results. Figure 3 depicts the performance gain 
achieved. From the graph it is evident that  

PODOS protocol out-performs 
traditional networking protocol and is almost 
twice as fast. The RTT difference is substantial  

 
 

at higher network loads. The graph depicts 
RTT’s for loads upto 35% - 40%. This is because 
35% - 40% network load is a substantial network 
load and the system is saturated at that load. In 
normal circumstances, the multiprogramming 
level would further increase the RTT thus 
making the load substantial. 
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Network T(podos) T(socket) 
Load Micro secs Micro secs 
< 5% 271 578 
5% 389 702 
10% 787 1435 
15% 1073 1456 
20% 1669 2460 
25% 2454 3381 
30% 2524 3723 
35% 3104 3746 

 Table 4 
 
The RTT for the PODOS protocol is of the form: 
 

 
 

    Figure 4 
 
The RTT for a PODOS packet is the sum of the 
times taken to build a PODOS packet, build an 
Ethernet packet, the driver transmit time (the 
time taken by the driver to place the packet on 
the physical media after its transmit function has 
been invoked), and the propagation time. The 
propagation time includes forward and backward 
propagation and the filter time. The forward 
propagation is the time taken for the packet to 
reach its destination after it has been placed on 
the physical media. The backward propagation 
time includes the time taken by the passive end 

to filter out the PODOS packet and reply. The 
filter time is the time taken by the filter, installed 
in the datalink layer, to extract PODOS packets. 
Of these, the propagation time is entirely 
dependent on the network load and the rest 
depend on the multiprogramming level of the 
system. 

Experiment #2   
 In this experiment we compare the 
RTT's of three protocols, the TCP/IP, the simple 
PODOS protocol, and PODOS with 
Transmission-groups. The PODOS with 
Transmission-groups is a variant of the PODOS 
protocol that transmits PODOS packets across 
multiple interfaces. In this case we vary the 
network load only on the primary interface and  
 
 
 
 

 
 
maintain minimal load on the other two 
interfaces. The Transmission-Groups based 
communication is a simple divide-and-conquer 
strategy. It divides the tasks in hand equally 
among interfaces thereby sharing load and 
enhancing system throughput. Table 5 depicts 
the results.  
 Figure 4 is a graphical representation of  
the results of this experiment. The T(tg-
minload) is the average RTT when transmitting 
packets across multiple interfaces, with varied 
load on the primary interface and minimal load 

T =  T +  T  +  T

T  =  T  +  T  +  T

T  =  T  +  T  +  T

po dos bu ild - po dos - pk t xm it prop agatio n

xm it a lloc - net - bu ff bu ild - E thernet - pk t drv - xm it

prop agatio n fo rw ard - prop agatio n back w ard - prop agatio n filter

���������������������
���������������������

�����������������������
�����������������������

���������������������
���������������������

�����������������������
�����������������������

���������������������
���������������������

�����������������������
�����������������������

Tpodos-Tsocket-Ttg_minload

0
500

1000
1500
2000
2500
3000
3500
4000

5% 10% 15% 20% 25% 30% 35%

Network Load

A
ve

ra
g

e 
R

T
T

 (
m

ic
ro

 
se

cs
)

T(podos)
T(socket)�������������������

�������������������T(tg-minload)



 9 

on the other 2 interfaces. In Figure 4, we can 
observe the drastic performance gain with 
Transmission-Groups. We can see how the 
Transmission-Groups based PODOS protocol 
performs consistently at higher loads. It is almost 
3 times faster than the regular networking 
protocol. Transmitting PODOS packets across 
multiple interfaces reduces the load on a 
particular interface and thus decreases the RTT 
of packets.  
 
Net T(podos) T(socket) T(tgminload) 
Load Micro secs Micro secs Micro secs 
5% 389 702 359 
10% 787 1435 510 
15% 1073 1456 679 
20% 1669 2460 700 
25% 2454 3381 887 
30% 2524 3723 1172 
35% 3104 3746 1766 

  Table 5   
The RTT is of the form: 

The RTT is the time taken to transmit a regular 
PODOS packet plus the time taken by the 
Transmission-Group algorithm. The 
Transmission-Group algorithm usually takes 
around 100-150 micro seconds, which is very 
less overhead when compared to the 
performance gain. 

    Figure 5 

Experiment #3 
This experiment is similar to the 

previous one except that we compare only the 
PODOS variants namely, the simple PODOS, the 
PODOS with Transmission-Groups (minimum 
load on secondary and tertiary interfaces), and 
the PODOS with Transmission-Groups 
(approximately same load on all interfaces). In 

this case we vary the network load on all 
interfaces. Table 6 depicts these results. 
   
Net T(podos) T(sameload) T(tgminload) 
Load Micro secs Micro secs Micro secs 
5% 389 386 359 
10% 787 537 510 
15% 1073 968 679 
20% 1669 1105 700 
25% 2454 1155 887 
30% 2524 1239 1172 
35% 3104 1935 1766 

  Table 6 
We can observe the stability of the T(sameload) 
protocol at high loads, 20%, 25%, and 30%. The 
RTT varies by very meager amounts. Figure 5 
depicts these results. From Figure 5 it is evident 
that even when the load on all interfaces is 
approximately the same, it is profitable to 
distribute packets among interfaces rather than 
transmitting them on a single highly loaded 
interface. 

Let us consider the 30% load case. The 
primary interface was already 30% loaded and 
transmitting another 1000 packets resulted in a 
RTT of 2524 micro seconds. This loads further a 
highly loaded interface. Whereas dividing the 
1000 packets among 3 interfaces and 
transmitting 333 packets on each interface 
resulted in an RTT of 1239 micro seconds which  

 
 
 

is less than half the RTT of a simple PODOS. 
Thus Transmission-Groups is beneficial even in 
a heavily loaded case. 

From the above three graphs we can 
derive the following relation that holds under all 
network loads: 
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The relation that is of more interest to us is the 
Transmission-Groups at approximately same 
load and the socket. From the above graphs it is 
obvious that the RTT of Transmission-Groups 
would be much better than that of a socket 
read/write. 

Experiment #4 
This experiment is to measure the 

connection establishment time of the PODOS 
protocol. We further compare this to traditional 
socket connection establishment in TCP/IP. 
Connection establishment in PODOS implies 
making a CDT entry at the active end, 
transmitting the packet, making a CDT entry at 
the passive end and responding back to the active 
end. This signifies a virtual circuit. We further 
time the read and write of the first 1500 byte 
packet through this circuit. In traditional socket 
connection this involves the following system  

    Figure 6 
 
 
calls: socket(), bind(), and connect(). Table 7 
depicts the results of this experiment. From 
Table 7 we can observer that T(cdt) is very stable 
and consistent at network loads. Figure 6 depicts 
these results. 
 
Net T(cdt) T(socket-conn) 
Load Micro secs Micro secs 

< 5% 2457 3255 
10% 2800 3378 
20% 3041 4000 
30% 3401 4742 
40% 3653 5000 

 Table 7 
 

The connection establishment in 
PODOS includes the server setup time too, 
whereas in typical socket connections, the server 
is assumed to be listening for a connection and 
thus server setup time is ignored. And server 
setup time typically takes around 500-800 micro 
seconds. Further, the results above depict 
connection establishment without Transmission-
Groups. Thus, in reality, the performance gain is 
much more.  

The RTT is of the form: 

 
A typical cdt entry creation, under an 

optimal multiprogramming level takes around 
200 micro seconds which is lesser than standard 
connection setup time. 

 
 

 
 

7.0 Conclusions 
  

In this paper we have dealt with the 
communication aspect in PODOS. We have 
described a custom communication protocol that 
employs a round-robin Transmission-Groups 
mechanism to multiplex packets across multiple 
network interfaces and provides a 
communication descriptor table as an interface 
for other PODOS layers such as NM, RM and 
GIPC. We then presented a detailed performance 
analysis of the PODOS communication protocol. 
We analyzed the performance of the variants of 
the PODOS protocol (the simple Transmission-
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Groups, Transmission-Groups under load) and 
further compared it with traditional networking 
protocol. 

The CM is undergoing a major 
metamorphosis currently with the addition of  
error checking mechanism in the CDT. Variants 
of Transmission-Groups attempt to speed-up 
PODOS packets alone. A tremendous 
performance gain can be achieved if a similar 
packet multiplexing mechanism can be applied 
to other packets. For this purpose we could use 
the Channel-Bonding feature provided by the 
Beowulf that helps in multiplexing regular 
network packets. These features would make the 
CM more robust and reliable. 
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